Verification of the SimSphere SVAT Model Performance In Simulating Land Surface Parameters At Selected CarboEurope IP Sites

George P. Petropoulos^{†,∫}, Martin J. Wooster[∫], Toby N. Carlson, Nick Drake[∫]

†. Department of Earth Sciences, University of Bristol, Wills Memorial Building, BS8 1RJ, Bristol, UNITED KINGDOM ¹. Department of Geography, King's College London, London WC2R 2LS, UNITED KINGDOM Department of Meteorology, Pennsylvania State University, University Park, PA 16802, UNITED STATES

Contact: petropoulos.george@gmail.com

University of Londo

1. INTRODUCTION:

Comparison of model simulations versus corresponding validated in-situ observations forms an integral and important validatory check of a computer simulation model before the developed code is used in performing any kind of analysis or other operation.

The present study objective is to examine the ability of the SimSphere SVAT model in simulating key parameters characterising land surface interaction processes.

The present study is also very timely, given that this SVAT model is being considered in a methodology being developed by National Polar-orbiting Operational Environmental Satellite System (NPOESS), for the operational retrieval of surface moisture content from satellite platforms due to be launched from 2012. (Chauhan et al., 2003).

5. RESULTS: comparisons by land cover/use type

Comparisons for all days of comparison (right) and those only flagged as cloud-free (right). Each symbol corresponds to one 30-min flux measure.

2. TESTING BED:

In-situ validated observations obtained from selected test sites and days belonging to the CarboEurope IP measurement network, representing a variety of climatic, topographic and environmental conditions were collected for

Site NAME	Borgo Cioffi	Roccarespampani 3 years	Roccarespampani 11 years	Monte Boldone	Malga Arpaco	Lavarone	Renon	Loobos	Lelystad	
site abbreviation	BC	ROC11	ROC3	MB	MA	LA	RE	LO	LE	
Geographic coordinates	40° 31'31.54"N 14°7'29.84"E	42° 24' 29.22" N 11° 55' 48.073"E	42° 23' 24.92" N 11° 55' 15.34"E	46°01'46.64''N 11° 04' 8.27''E	46° 07' 00" N 11° 42' 10" E	45°57'18.93"N 11° 16' 2.23"E	46°35'16"N 11°26'04.90"E	52° 10' 04.29" N 05° 44' 38.25" E	52° 10' 04.29"N 05° 44' 38.25" E	
Country	ITALY	ITALY	ITALY	ITALY	ITALY	ITALY	ITALY	NETHERLANDS	NETHERLANDS	
land use	Crop/ grass	oak	oak	grassland	grassland	spruce	spruce	Scots Pine	grassland	
Ecosystem type / Land cover	Cropland	Forest	Forest	Grassland	Grassland	Forest mixed	Conifers Forest	Conifers Forest	grassland	
Dominant Species	Maize corn / Lolium grass	Quercus cerris	Quercus cerris	grassland Nardum stricta	Arrhenathertum	Abies alba	Picea abies, spruce	Pinus sylvestris	Not specified	
Elevation	20	243.8	223.9	1550	1699	1353	1720	25	0	
Topography	Flat	Flat to slightly sloping (<7 degrees)	Flat to slightly sloping (<7 degrees)	Gently sloping (<7 degrees)	Gently sloping (<7 degrees)	Gently sloping (<7 degrees)	Gently sloping (<7 degrees)	Flat	Flat	
Climate description / class Mean	Temperate arid	Mediterranean / mondane	Mediterranean mondane	sub continental	sub continental	sub continental	Sub alpine- continental	Temperate / oceanic	Temperate / oceanic	
annual temperature (C) Mean	18	15.5	15.5	5.5	6.3	7.8	4.1	9.8	10	
annual precipitation (mm)	600	876.2	876.2	1189	1200	1150	1010	786	780	
LAI	2	3	4	3-4	3	7	4	2	1-3	
soil type	Clay-silt	Cambiso	Cambisol	Fine loamy	fine loamy	Calcaric Cambisol	Haplic Podsol	Podzolic	Clay	

Figure 2: Some of the selected test sites used in the present study

6. RESULTS: comparisons by terrain type

Comparisons for the sites of sloped terrain (left) and for the sites of flat terrain (right). Each symbol corresponds to one 30-min flux measure.

7. RESULTS: examples from other comparisons performed

Table2: Summary of key characteristics of the test sites used in
 the SimSphere SVAT model validation

3. SimSphere SVAT:

It is a **1-D** SVAT, describes the transport of water and energy in a column from the root-zone below the <u>Surface</u>, through the <u>Vegetation</u>, to the lower <u>Atmosphere</u>.

The processes and quantities are allowed to evolve in time during a day and *night (up to 24 hours).*

SimSphere requires **52** input parameters & produces **29** outputs.

VERTICAL STRUCTURE: the PBL is divided in 4 layers, of depths variable in time

The transition layer: the vertical exchanges are dominated by molecular and radiative effects as well as by vertical wind changes The substrate layer: varies in depth, assumed to have homogeneous properties The surface layer:

extends from the top of the transition laver to ~ 50 meters fluxes of heat and water vapor do not vary more than 10%

The mixing layer:

Figure 2: Facets of its height depends upon forcing from below, especially the amount of H SimSphere architecture

A review of the model use, originally developed by Carlson and Boland (1978) has been provided by Petropoulos et al., (2009). The model is freely distributed at https://courseware.e-education.psu.edu/simsphere/

4. METHODS:

(Rn) Net Radiation comparisons		slope	\mathbf{R}^2	Bias	Scatter	RMSD	MAD	MAPD	d-index
all days:		0.93	0.875	12.84	78.90	91.12	69.67	21.19	0.940
cloud free days:		0.92	0.917	14.47	67.69	82.81	63.06	27.84	0.946
cloud free and flat terrain:		1.03	0.944	20.93	63.87	78.48	61.46	35.32	0.942
cloud free and flat terrain, with EBC validated:		0.82	0.935	2.94	63.72	76.72	54.97	44.79	0.935
(LE) Latent Heat flux comparisons	Ν	slope	R ²	Bias	Scatter	RMSD	MAD	MAPD	d-index
all days:	849	0.88	0.622	21.24	38.87	46.64	33.11	208.05	0.780
cloud free days:		1.07	0.661	22.36	35.61	43.21	30.60	265.62	0.798
cloud free and flat terrain:		1.37	0.808	13.97	25.19	29.54	20.84	51.15	0.889
cloud free and flat terrain, with EBC validated:		0.8	0.834	10.59	23.94	27.11	19.39	33.21	0.881
(H) Sensible Heat flux comparisons	N	slope	R ²	Bias	Scatter	RMSD	MAD	MAPD	d-index
all days:	997	0.38	0.750	-18.08	69.40	80.67	56.68	-4.30	0.753
cloud free days:		0.41	0.781	-13.82	61.31	73.05	53.21	3.68	0.777
cloud free and flat terrain:		0.39	0.732	11.06	45.51	52.18	43.13	24.52	0.826
cloud free and flat terrain, with EBC validated:		0.46	0.753	2.01	63.03	68.75	57.50	92.10	0.762

8. CONCLUSIONS:

Overall, despite the occasionally inferior performance of the model in simulating the examined parameters (mainly the underestimation of H flux), SimSphere was able to

identify the patterns of change expected, if not always the magnitudes.

Accuracies obtained, particularly for the subset of the cloud-free days and flat terrain sites, were in agreement with analogous verification experiments of the model carried out in dissimilar conditions (e.g. Taconet et al., 1986; Ross and Oke, 1986), and indicated the usefulness of the model in practical applications either as a stand alone tool or in combination with remote sensing observations.

8. REFERENCES:

•Carlson, T.N.; Boland, F.E. Analysis of urban-rural canopy using a surface heat flux/temperature model. J. Appl. Meteorol. 1978, 17, 998-1013 •Petropoulos, G., Carlson, T.N. and M. J., Wooster : A review of a 1D SVAT model for the estimation of hydrometeorological and related land surface parameters. Sensors, 2009, 9(6), 4286-4308

•Ross, S.; Oke, T.R. Tests of three urban energy balance models. Bound. Layer Meteorol. 1988, 44, 73-96

•Taconet, O.; Bernard, R.; Vidal-Madjar, D. Evapotranspiration over an agricultural region using a surface flux/temperature model based on NOAA-AVHRR data, J. Clim. Appl. Meteorol. 1986, 25, 284-30708

Acknowledgments

Authors would like to thank the CarboEurope IP site managers and their associates for providing us the in-situ measurements for conducting the present study. Dr. Petropoulos is also grateful to the Greek State Scholarships Foundation for supporting financially his PhD research project, part of which included this study.